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Abstract. The matrix 8-component Dirac-like form of the P -odd equations for boson fields of spin 1 and
0 are obtained and the GL(2, c) symmetry group of the equations is derived. We found exact solutions of
the field equation for vector particles with arbitrary electric and magnetic moments in external constant
and uniform electromagnetic fields. The differential probability of pair production of vector particles with
electric dipole moments and anomalous magnetic moments by an external constant and uniform electro-
magnetic field has been found using exact solutions. We have calculated the imaginary and real parts of
the electromagnetic field Lagrangian that takes into account the vacuum polarization of vector particles.

1 Introduction

The vector particles W±, Z0 play very important roles
as carriers of the weak interactions. The standard model
of the electroweak interactions (SM), which implies the
Higgs mechanism of acquiring mass of the vector par-
ticles, is renormalizable. Renormalizable electrodynamics
for massive charged vector bosons is based in the frame-
work of the SM on the spontaneous breaking of the local
SU(2)L⊗U(1)-symmetry. The U(1) subgroup is unbroken
and the corresponding gauge electromagnetic field remains
massless. At the same time the gauge fields, which are
identified with the intermediate vector bosons (W±, Z0)
corresponding to the broken SU(2)L subgroup, acquire
masses. There is a certain symmetry of the vector electro-
magnetic vertices in the renormalizable SM and as a result
the gyromagnetic ratio for vector particles is equal to two.
It should be noticed that for the non-renormalizable case
of the Proca Lagrangian the gyromagnetic ratio g = 1.
So if an anomalous magnetic moment (AMM) of the vec-
tor particles is observed which corresponds to g �= 2, that
would signal physics beyond the SM.

The CP violation observed in the decays of the K0-
mesons and in B0

d/B
0
d → J/ψK0

s decays remains mys-
terious. In the SM, CP -violating interactions can be ex-
plained by the Kobayashi–Maskawa mechanism which pre-
supposes a single phase for three quark generations. In this
scheme the predicted electric dipole moments (EDM’s) of
the elementary particles are extremely small. In some su-
persymmetric and multi-Higgs models which are exten-
sions of the SM, CP -violating effects are much stronger
[1]. The EDM of particles violates the time-reversal (T )
symmetry and the CP invariance, which are equivalent
due to the CPT -theorem [2]. Some aspects of the CP -
violating effects which follow from the EDM of the neu-

tron, electron and atoms are discussed in [3]. The EDM
bounds of the neutron and the electron can be established
in low energy experiments.

There are some investigations of the EDM of vector
W -bosons in the framework of the SM and beyond in [4].
But for the W -bosons it is necessary to analyze the high
energy processes for extracting CP -odd asymmetries. The
EDM of the W -bosons can give a large contribution to the
EDM of fermions (in particular to electrons). The EDM
of particles may be also induced by Higgs-boson exchange
[5]. The prediction of the EDM of the W -boson in the
SM is dW � 10−29 e cm [6] but beyond the SM it can
be (for example in the two-Higgs-doublet model) about
10−21–10−20 e cm (see last reference in [4]). The experi-
mental constraint on the EDM of the W -boson which fol-
lows from the experimental upper bound for the neutron
EDM dn = (−3 ± 5) × 10−26 e cm [7] is dW ≤ 10−19 e cm.
So the presence of the EDM can indicate physics beyond
the SM.

The strong interacting composite hadrons ρ, ω (and
others) possess spin one. The theory of strong interactions
of quarks and gluons, quantum chromodynamics (QCD),
is renormalizable. However, the properties of hadrons are
described by the infrared region of QCD where perturba-
tion theory in the small parameter αs is not acceptable.
In this region some phenomenological models are used.
A non-perturbative theory of the strong interactions of
hadrons has not been developed yet, but there is progress
in describing hadrons in the framework of QCD string
theory [8]. In this approach the EDM of mesons [9] and
baryons [10] appears naturally. It should be noticed that
the EDM of the neutron may be induced by the ϑ-term
of the QCD vacuum. The QCD vacuum angle ϑ violates
P and CP symmetries and gives CP -odd electromagnetic
observables. As the EDM of the neutron is small the ϑ-
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parameter of the QCD vacuum is also small. It is pos-
sible to explore the axion mechanism [11] to solve the
strong CP problem of having the parameter ϑ = 0. Vector
mesons may possess an EDM due to the ϑ-term [12] and
CP -odd electromagnetic form-factors of the ρ-mesons can
be introduced.

In view of the great interest to physics in the frame-
work of the SM, and physics beyond the SM, it is very
important to study the various processes involving mas-
sive vector bosons with the EDM and AMM. The im-
portant and interesting vacuum quantum effects are pair
production of particles and antiparticles and vacuum po-
larization [13]. In particular, there is a vacuum instability
of the vector particles in a magnetic field [14]. This is
due to the large contribution of the tachyon mode to the
negative part of the Callan–Symanzik β-function, and as
a result the vacuum is reconstructed in a magnetic field.
Some studies were performed to investigate the vacuum
quantum effects for vector fields. Pair production and vac-
uum polarization of vector fields with a gyromagnetic ra-
tio g = 2 by a constant uniform electric field were inves-
tigated in [15]. The semiclassical imaginary-time method
was used in [16] to find the probability of pair production
by a constant electromagnetic field for arbitrary spin s and
gyromagnetic ratio g. In [17] we found the pair production
probability and the vacuum polarization of fields for arbi-
trary s and g on the basis of the exact solutions of the wave
equation for particles in a constant and uniform electro-
magnetic field and with the help of the Fock–Schwinger
proper-time method. In this approach fields realize the
(s, 0) ⊕ (0, s)-representation of the Lorentz group. Non-
linear corrections to the constant uniform electromagnetic
field due to the vacuum polarization of a charged vector
field in the framework of the renormalizable gauge the-
ory were studied in [18]. The pair production probability
of charged vector bosons with g = 1 by a non-stationary
electric field was derived in [19].

In this work we study the pair production probability
and the vacuum polarization of the charged vector par-
ticles with arbitrary EDM and AMM. This paper is or-
ganized as follows. In Sect. 2 we proceed from the Dirac–
Kähler equations for boson fields of spin one and zero.
We show that this system of wave equations can be repre-
sented as two subsystems of P -odd equations for self-dual
and antiself-dual antisymmetric tensors of second rank.
The matrix form and the symmetry group of the equa-
tions is investigated in Sect. 3. In Sect. 4 a P -odd system
of first order equations for vector fields with the EDM
and AMM is introduced. We found exact solutions of the
second order field equation in external constant and uni-
form electromagnetic fields. The pair production probabil-
ity of vector particles with EDM and AMM is calculated
in Sect. 5 with the help of the solutions found. Section 6
is devoted to finding the vacuum polarization of vector
particles. Section 7 contains the conclusions.

2 Field equations

One of the non-perturbative approaches of the strong in-
teraction is lattice QCD [20]. For describing fermions on

the lattice the Dirac–Kähler equation [21] can be used
(see [22]). The Dirac–Kähler’s equation in 4-dimensional
space-time is given by

(d − δ +m)Φ = 0,

where d is the exterior derivative, δ = −�−1d� transforms
a n−form into a (n−1)-form, Φ denotes an inhomogeneous
differential form. The star operator � connects a n-form
to a (4− n)-form so that �2 = 1, d2 = δ2 = 0. The Lapla-
cian is given by (d − δ)2 = − (dδ + δd) = ∂µ∂µ where the
operator (d − δ) is the analog of the Dirac operator γµ∂µ.
The inhomogeneous differential form Φ can be represented
as

Φ = ϕ(x) + ϕµ(x)dxµ +
1
2!
ϕµν(x)dxµ ∧ dxν

+
1
3!
ϕµνρ(x)dxµ ∧ dxν ∧ dxρ

+
1
4!
ϕµνρσ(x)dxµ ∧ dxν ∧ dxρ ∧ dxσ,

where ∧ is the exterior product; ϕ(x), ϕµ(x), ϕµν(x),
ϕµνρ(x), ϕµνρσ(x) are scalar, vector and antisymmetric
tensor fields, respectively. The antisymmetric tensors
ϕµνρ(x), ϕµνρσ(x) are connected with pseudovector and
pseudoscalar fields by the relationships

ϕ̃µ(x) =
1
3!
εµνρσϕνρσ(x), ϕ̃(x) =

1
4!
εµνρσϕµνρσ(x),

where εµναβ is the antisymmetric Levy-Civita tensor;
ε1234 = −i. The Dirac–Kähler equation formulated in the
framework of differential forms [21] is equivalent to the
following system of tensor fields [23]:

∂νψµν(x) − ∂µψ(x) +m2Bµ(x) = 0,

∂νψ̃µν(x) − ∂µψ̃(x) +m2Cµ(x) = 0, (1)

∂µBµ(x) − ψ(x) = 0, ∂µCµ(x) − ψ̃(x) = 0, (2)
ψµν(x) = ∂µBν(x) − ∂νBµ(x) − εµναβ∂αCβ(x), (3)

where ψ̃µν = (1/2)εµναβψαβ is the dual tensor. Expres-
sion (3) is the most general representation for the anti-
symmetric tensor of second rank [24,25]. Equations (1)–
(3) describe the system of the vector (Bµ(x)), pseudovec-
tor (Cµ(x)), scalar (ψ(x)), and pseudoscalar (ψ̃(x)) fields.
For complex values of the vector potentials Bµ(x) and
Cµ(x), (1)–(3) correspond to charged vector fields. As the
system of (1)–(3) contains two 4-vectors, Bµ(x), Cµ(x),
which carry spin one and zero (without Lorentz condi-
tions, ∂µBµ(x) �= 0, ∂µCµ(x) �= 0) there is a doubling of
the spin states of the particles. So (1)–(3) describe fields
with two spin one and two spin zero states. Using the pro-
jection operator technique these states may be separated
[23]. The field equations (1)–(3) can be derived from the
corresponding Lagrangian and represent the Lagrange–
Euler equations. The Proca equations [26] are a special
case of (1)–(3) when the constraints Cµ = 0, ∂µBµ = 0
are imposed. In the case of Cµ = 0, ∂µBµ �= 0, we arrive
at Stueckelberg’s equation [27] describing spin one and
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zero fields without doubling of the spin states of a parti-
cle. The matrix form of (1)–(3) is the 16× 16-dimensional
Dirac equation [23]. This makes it possible to describe
fermions with spin 1/2 with the help of the fields ψ(x),
Bµ(x), ψµν(x), ψ̃(x), Cµ(x) which do not realize the ten-
sor representation of the Lorentz group in this case and
are connected with spinors. In this work we consider the
case when the fields ψ(x), Bµ(x), ψµν(x), ψ̃(x), Cµ(x) are
bosonic fields carrying spins 0 and 1.

The Dirac–Kähler equations (1)–(3) are equivalent to
the following systems:

∂νMµν(x) − ∂µM(x) +m2Mµ(x) = 0,
∂µMµ(x) = M(x),
Mµν(x) = ∂µMν(x) − ∂νMµ(x) − iεµναβ∂αMβ(x), (4)

with the self-dual tensor Mµν(x) = −iM̃µν(x) and

∂νNµν(x) − ∂µN(x) +m2Nµ(x) = 0,
∂µNµ(x) = N(x),
Nµν(x) = ∂µNν(x) − ∂νNµ(x) + iεµναβ∂αNβ(x), (5)

with the antiself-dual tensor Nµν(x) = iÑµν(x), where

M(x) =
1√
2

(
ψ(x) − iψ̃(x)

)
,

N(x) =
1√
2

(
ψ(x) + iψ̃(x)

)
,

Mµ(x) =
1√
2
(Bµ(x) − iCµ(x)) ,

Mµν(x) =
1√
2

(
ψµν(x) − iψ̃µν(x)

)
,

Nµ(x) =
1√
2
(Bµ(x) + iCµ(x)) ,

Nµν(x) =
1√
2

(
ψµν(x) + iψ̃µν(x)

)
.

Adding and subtracting (1)–(3) we get (4) and (5). The
self-dual tensor Mµν which obeys (4) is transformed under
the (1, 0)-representation of the Lorentz group and has 3
independent components (see also [28]). Equations (4) are
not invariant under the parity transformation and there
is no Lagrangian formulation of them. This also applies
to (5) for the antiself-dual tensor Nµν which transforms
under the (0, 1)-representation of the Lorentz group. But
if we consider the whole system of (4) and (5) (which is
equivalent to (1)–(3)) on the basis of the (0, 0)⊕(1/2, 1/2)
⊕ (1, 0) ⊕ (0, 1) ⊕ (1/2, 1/2) ⊕ (0, 0)-representation of the
Lorentz group, we will have a P -invariant theory within
the Lagrangian formulation. Each of the system of (4) and
(5) describes eight independent variables (M(x), Mν(x),
Mab(x)), (N(x), Nν(x), Nab(x)).

3 Matrix form of equations

Let us introduce 4-component columns:

ξ(x) = −im

(
Ma(x)
M4(x)

)
, χ(x) =

(
M̃a(x)
M(x)

)
,

ξ′(x) = −im

(
Na(x)
N4(x)

)
, χ′(x) =

(
Ña(x)
N(x)

)
, (6)

where M̃a(x) = (1/2)εamnMmn(x), Ña(x) = (1/2)εamn

Nmn(x). Taking into account the notation of (6), (4) and
(5) can be represented by

αµ∂µξ(x) = mχ(x),
αµ∂µχ(x) = mξ(x), (7)

α′
µ∂µξ

′(x) = mχ′(x),

α′
µ∂µχ

′(x) = mξ′(x), (8)

where

α1 =


0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0

 , α2 =


0 0 i 0
0 0 0 −i
−i 0 0 0
0 i 0 0

 ,

α3 =


0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0

 , α′
1 =


0 0 0 i
0 0 −i 0
0 i 0 0
i 0 0 0

 ,

α′
2 =


0 0 i 0
0 0 0 i
−i 0 0 0
0 i 0 0

 , α′
3 =


0 −i 0 0
i 0 0 0
0 0 0 i
0 0 i 0

 ,

α′
4 =


−i 0 0 0
0 −i 0 0
0 0 −i 0
0 0 0 i

 , α′
1 =


0 0 0 −i
0 0 −i 0
0 i 0 0
−i 0 0 0

 ,

α′
2 =


0 0 i 0
0 0 0 −i
−i 0 0 0
0 −i 0 0

 , α′
3 =


0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 −i 0

 ,

α′
4 =


i 0 0 0
0 i 0 0
0 0 i 0
0 0 0 −i

 , α4 = iI4, αµ = (αk,−iI4) .

(9)

Equations (7) and (8) can also be cast in the form

βµ∂µϕ(x) +mϕ(x) = 0, (10)
β′

µ∂µϕ
′(x) +mϕ′(x) = 0, (11)
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where

ϕ(x) =

(
χ(x)
ξ(x)

)
, βµ = −

(
0 αµ

αµ 0

)
,

ϕ′(x) =

(
χ′(x)
ξ′(x)

)
, β′

µ = −
(

0 α′
µ

α′
µ 0

)
, (12)

and the matrices βµ, β′
µ obey the Dirac algebra

βµβν + βνβµ = 2δµν . (13)

We can combine (10) and (11) in the 16-component
Dirac-type wave equation, as follows:

(Γµ∂µ +m)Ψ(x) = 0, (14)

where

Ψ(x) =

(
ϕ(x)
ϕ′(x)

)
, Γµ =

(
βµ 0
0 β′

µ

)
. (15)

The 16 × 16-matrices Γµ also obey the Dirac algebra
(13). This means that the system of (7) and (8) is equiv-
alent to four Dirac equations. So the Dirac–Kähler equa-
tions are equivalent to the two matrix equations (10) and
(11) (or the two systems of tensor equations (4) and (5)).
Equation (10) (and (4)) as well as (11) (and (5)) are parity
non-invariant separately and at the same time the system
of the two equations (10) and (11) (or the Dirac–Kähler
equations) are P -invariant.

Now we will find the symmetry group of (10) and (11).
As the matrices βµ, β′

µ obey the same algebra, (10) and
(11) have the same symmetry group. Therefore, we only
need to consider (10), which is equivalent to (4).

The matrices βµ are 8-component Dirac-type matrices,
and in a specific basis they take the form β̂µ = I2⊗γµ. It is

obvious that the matrices β̂m = τm ⊗ I4 (τm are the Pauli
matrices) form the symmetry algebra of (10). It should be
noted that the internal symmetry under consideration is
not violated by introducing the electromagnetic fields by
the substitution ∂µ → ∂µ − ieAµ. In the representation
(12), the matrices

βm =

(
ρm 0
0 ρm

)
(16)

commute with the matrices βµ, if [ρm, αn] = 0, where the
matrices αn are given by (9) and satisfy the Pauli commu-
tation relations: {αi, αk} = 2δik, [αi, αk] = 2iεiklαl. Such
matrices ρm which commute with αn have the form

ρ1 =


0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

 , ρ2 =


0 0 −i 0
0 0 0 −i
i 0 0 0
0 i 0 0

 ,

ρ3 =


0 i 0 0
−i 0 0 0
0 0 0 −i
0 0 i 0

 ; (17)

they also obey the Pauli commutation relations. Further
we will also use the matrix β4 = iI4.

Let us consider the group of the transformations of the
wave function of (10):

ϕ(x) → exp
(
mµβµ

)
ϕ(x), (18)

where the mµ are four complex parameters. The transfor-
mations (18) are defined for the complex fields describing
the charged fields; they form the internal symmetry group
of (10) which is isomorphic to the GL(2, c) group.

It is possible to apply (10) to the description of spinor
particles. In this case the wave function ϕ(x) realizes the
spinor representation of the Lorentz group and (10) is
equivalent to two Dirac equations; it can be obtained by
the variation procedure from the corresponding
Lagrangian. Thus, the generators of the Lorentz group
are given by

J (1/2)
µν =

1
4
(βµβν − βνβµ) , (19)

and the Hermitianizing matrix is η = β4.
In the case of the bosonic fields (see (6) and (12)),

however, there is no Lagrangian formulation of (10) be-
cause it is a parity non-invariant equation based on the
reducible (0, 0) ⊕ (1/2, 1/2)⊕ (1, 0)-representation of the
Lorentz group.

The requirement that the Lagrangian of the spinor
fields (η = β4) be invariant under the transformations
(18) yields the restriction on the parameters: m∗

k = −mk,
m∗

4 = m4; this corresponds to the extraction of the U(2)
subgroup. According to the Noether theorem, this pro-
duces the conservation current

θµα = ϕ(x)βµβαϕ(x), (20)

so that ∂µθµα = 0; ϕ(x) = ϕ+(x)β4, ϕ+(x) is the Hermite-
conjugate wave function. It is easy to verify that the quan-
tity (20) is also conserved in the boson case (see also [28]),
when the fields are given by (6) and (12). We notice that
the internal symmetry group of the Dirac–Kähler equa-
tion (14) is GL(4, c) and the corresponding Lagrangian
for bosonic fields is invariant under the transformations
of the SO(4, 2) group (or the locally isomorphic group
SU(2, 2)) [29,23].

4 Vector particle with EDM and AMM
in uniform electromagnetic field

We consider here the description of electromagnetic inter-
actions of vector particles possessing the EDM and AMM.
Sakata and Taketani added some terms in the equations
which describe the effects of the anomalous moments [30],
and Corben and Schwinger [31] included the AMM in
the Proca equations [26]. Yang and Bludman considered
an anomalous electric quadrupole moment [32]. Introduc-
ing in (4) the interaction with the electromagnetic field
∂µ → Dµ = ∂µ − ieAµ, AMM, and EDM, we arrive at
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the equations (at the substitutions M → ψ, Mµ → ψµ,
Mµν → ψµν)

Dµψµ = ψ,

ψµν = Dµψν − Dνψµ + σεµναβDαψβ ,

Dνψµν − Dµψ +m2ψµ + ieκFµνψν = 0. (21)

On setting σ = 0 we get Stueckelberg’s equations with
the AMM eκ which describe fields of spin 1 and 0 [27]. It
should be noted that for the field equations (21) the mass
of the field with a spin of zero coincides with the mass of
the vector field. Quantization of the fields (21) leads to
the indefinite metric for a scalar state. At σ = i and κ = 0
(21) have the 8-component matrix formulation (10) (with
the replacement ∂µ → Dµ) with matrices βµ (12) obeying
the Dirac algebra. It is easy to obtain the second order
equation for the 4-vector ψµ(x) from (21). As a result one
finds

(D2
ν − m2)ψµ(x) + ie

(
σF̃µν − gFµν

)
ψν(x) = 0, (22)

where F̃µν = (1/2)εµναβFαβ is the dual tensor, g = 1 + κ
is the gyromagnetic ratio for the quanta of spin 1. Equa-
tion (22) describes a particle with the magnetic moment
eg/(2m) and the EDM σ/(2m). It should be noted that in
the case of the Proca equation with the EDM and AMM,
we have in (22) the additional term (−DµDνψν) due to the
absence of a scalar state. Equation (22) can be treated in
the framework of the ξ-formalism [33] as a wave equation
for a vector field in the gauge ξ = 1. We notice that the
formal counting of the divergences corresponding to (22)
leads to a renormalizable theory due to the form of the
field propagator which is proportional to 1/p2 but with
the presence of an indefinite metric.

It is easier to solve (22) compared to the Proca equa-
tion for a particle in external electromagnetic fields. To
estimate the physical quantities for a vector particle one
needs to eliminate the contribution of a scalar state. In
the following calculations we will use this procedure.

Here we will find the solutions of (22) for a particle in
the field of uniform and constant electromagnetic fields.
We note [13] that the matrices Fµν , F̃µν have eigenvalues
as follows:

Fµνψ
(λ)
ν = F (λ)ψ(λ)

µ , F̃µνψ
(λ)
ν =

1
F (λ) Gψ(λ)

µ ,

F (λ) = ±F (1),±F (2),

λ = 1, 2, 3, 4, (23)

F (1) =
i√
2

[
(F + iG)1/2 + (F − iG)1/2

]
,

F (2) =
i√
2

[
(F + iG)1/2 − (F − iG)1/2

]
,

F =
1
4
F 2

µν =
1
2
(
H2 − E2) ,

G =
1
4
FµνF̃µν = E · H, (24)

and E, H are the electric and magnetic fields, respec-
tively. In the diagonal representation (24), (22) becomes

(
D2

ν − m2)ψ(λ)
µ (x) + ie

(
σ

1
F (λ) G − gF (λ)

)
ψ(λ)

µ (x) = 0.

(25)
Equation (25) represents the Klein–Gordon-type equa-

tion for every component of the eigenfunction ψ
(λ)
µ (x). We

consider the general case when the two Lorentz invariants
of the electromagnetic fields F �= 0, G �= 0. It is conve-
nient to use a coordinate system in which the electric E
and magnetic H fields are parallel (E = nE, H = nH,
n = (0, 0, 1)) and the 4-vector potential takes the form

Aµ = (0, x1H,−tE, 0) . (26)

After introducing the variables [34] (see also [35])

η =
p2 − eHx1√

eH
, τ =

√
eE
(
t+

p3

eE

)
,

ψ(λ)
µ (x) = exp [i (p2x2 + p3x3)]Φ(λ)

µ (η, τ), (27)

(25) reads[
eH
(
∂2

η − η2)− eE
(
∂2

τ + τ2)
−m2 + ie

(
σ

1
F (λ) G − gF (λ)

)]
Φ(λ)

µ (η, τ) = 0, (28)

where ∂η = ∂/∂η, ∂τ = ∂/∂τ . The solution to (28) exists
in the form

Φ(λ)
µ (η, τ) = ξµφ

(λ)(η)χ(λ)(τ), (29)

with a constant vector ξµ, and the eigenfunctions φ(λ)(η),
χ(λ)(τ) obey the following equations:[

eH
(
∂2

η − η2)− m2

+ie
(
σ

1
F (λ) G − gF (λ)

)
+ k2

λ

]
φ(λ)(η) = 0, (30)[

eE
(
∂2

τ + τ2)+ k2
λ

]
χ(λ)(τ) = 0, (31)

where k2
λ are the eigenvalues. The finite solution (at η →

∞) to (30) is

φ(λ)(η) = N0 exp
(

−η2

2

)
Hn(η), (32)

where N0 is the normalization constant, and Hn(η) are
Hermite polynomials. The requirement that this solution
be finite leads to the condition

k2
λ − m2 + ie

(
σ

1
F (λ) G − gF (λ)

)
= eH(2n+ 1),

n = 1, 2, ..., (33)
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n is the principal quantum number and kλ is the spectral
parameter. Equation (31) has four solutions with different
asymptotics at t → ±∞ [34]. We have

+χ(λ)(τ) = Dν [−(1 − i)τ ],
−χ(λ)(τ) = Dν [(1 − i)τ ],
+χ(λ)(τ) = Dν∗ [(1 + i)τ ],

−χ(λ)(τ) = Dν∗ [−(1 + i)τ ], (34)

where Dν(x) are the parabolic-cylinder functions (the
Weber–Hermite functions) and

ν =
ik2

λ

2eE
− 1

2
.

The four solutions of (25) for the potential (26) with dif-
ferent asymptotic forms are given by

±
±ψ(λ)

µ (x) = N0ξµ exp
{
i(p2x2 + p3x3) − η2

2

}
×Hn(η)±±χ(λ)(τ). (35)

The exact solutions (35) will be used to estimate the
pair production probability of vector particles and an-
tiparticles in the external constant and uniform electro-
magnetic fields.

5 Pair production of vector particles
with EDM and AMM

The probability for pair production of vector particles
with the EDM and AMM by constant electromagnetic
fields can be obtained through the asymptotic form of
solutions (35) when the time t → ±∞. The functions
+
+ψ(λ)(τ) at t → ±∞ have a positive frequency and −

−ψ(λ)

(τ) have a negative frequency. The three quantities k2
λ and

the momentum projections p2, p3 entering solutions (34)
and (35) are conserved. The functions (34) (see [34]) obey
the relations

+χ(λ)(τ) = c1nλ
+χ(λ)(τ) + c2nλ

−χ(λ)(τ),
+χ(λ)(τ) = c∗

1nλ+χ(λ)(τ) − c2nλ−χ(λ)(τ),
−χ(λ)(τ) = −c∗

2nλ+χ(λ)(τ) + c1nλ−χ(λ)(τ),

−χ(λ)(τ) = c∗
2nλ

+χ(λ)(τ) + c∗
1nλ

−χ(λ)(τ), (36)

where

c2nλ = exp
[
−π

2
(ε+ i)

]
,

ε =
m2 − ie

(
σ

1
F (λ) G − gF (λ)

)
+ eH(2n+ 1)

eE
,

| c1nλ |2 − | c2nλ |2= 1. (37)

The quantity c2nλ allows us to calculate the probability
of pair production of vector particles in the state with the

quantum number n and corresponding to the eigenvalue
F (λ). The probability for the production of a pair of vector
particles in the state with quantum number n, components
of momentum p2, p3 and corresponding to the eigenvalue
F (λ) throughout all space and during all time, is

| c2nλ |2 = exp
{

−π

[
m2

eE
+

H

E
(2n+ 1)

]}
×
∣∣∣∣exp [iπ(σ 1

F (λ) G − gF (λ)
)
/E

]∣∣∣∣ . (38)
The expression (38) also gives the probability of the

annihilation of a pair of particles with quantum numbers
n, p2, p3. From (38) we find the average number of pairs
produced from a vacuum

N =
∫ ∑

n,λ

| c2nλ |2 dp2dp3
L2

(2π)2
, (39)

where (2π)−2dp2dp3L
2 means the final state density with

the cut-off L along the coordinates (V = L3 is the nor-
malization volume). In accordance with the approach [34]
we can use the substitutions∫

dp2 → eHL,

∫
dp3 → eET. (40)

Here T is the time of observation. It is possible to cal-
culate the sum in (39) over the principal quantum number
n, and the eigenvalues λ with the help of (38) and (24).
Using (40) we obtain the probability of pair production of
particles per unit volume and per unit time

I(E,H) =
N

V T
=

e2EH

8π2

exp
[−πm2/(eE)

]
sinh (πH/E)

×
∑

λ

∣∣∣∣exp [iπ(σ 1
F (λ) G − gF (λ)

)
/E

]∣∣∣∣ . (41)

Evaluating the sum with the help of (24) we find∑
λ

∣∣∣∣exp [π(σ 1
F (λ) G − igF (λ)

)
/E

]∣∣∣∣
= 2 coshπ

(
σ + g

H

E

)
+ 2, (42)

we arrive at the pair production probability

I(E,H) =
e2EH

4π2

coshπ (σ + gH/E) + 1
sinh (πH/E)

× exp
[−πm2/(eE)

]
. (43)

So I(E,H) is the intensity of the creation of pairs of
particles with a spin of 1, 0. Below we extract the pair
production probability for particles with the pure spin 1
possessing the gyromagnetic ratio g (and magnetic mo-
ment µ = eg/(2m)) and the EDM σ/(2m).

It follows from (43) that there is pair production in a
purely magnetic field if g > 1, which is an indication of



S.I. Kruglov: Pair production and vacuum polarization of vector particles 95

the instability of the vacuum in the magnetic field. For
the case g > 1, σ = 0, this property for the higher spin
particles was pointed out in [16].

It is interesting to compare the probability (43) with
those for particles possessing pure spin 1. The probability
of pair production per unit volume and per unit time of
vector particles on the base of the (0, 1) ⊕ (1, 0)-repre-
sentation of the Lorentz group at σ = 0 is given by [16,
17]

I(1)(E,H) =
e2EH

8π2

exp
[−πm2/(eE)

]
sinh (πH/E)

sinh [3gπH/(2E)]
sinh [gπH/(2E)]

.

(44)
Setting σ = 0 in (43) and using some transformations

we arrive at the equality

I(E,H) = I(1)(E,H) + I(0)(E,H), (45)

where

I(0)(E,H) =
e2EH

8π2

exp
[−πm2/(eE)

]
sinh (πH/E)

is the intensity of the creation of pairs of scalar parti-
cles [13] (see also the creation of pairs of composite scalar
particles in [36]). The physical meaning of (45) is clear:
the probability of pair production of fields with spin 1, 0
is the sum of the production probabilities of vector and
scalar particles. By excepting (45) for arbitrary σ and g
we obtain from (43) the expression for the pair production
probability of particles with pure spin one:

I(1)(E,H) =
e2EH

8π2

2 coshπ (σ + gH/E) + 1
sinh (πH/E)

× exp
[−πm2/(eE)

]
. (46)

Equation (46), the one that we obtained, is a new result
for the intensity of pair production of vector particles with
the EDM and AMM. From the general formula (46) we
find that in the case σ = g = 0, pair production of vector
particles is three times that for scalar pair production.
This is due to the three physical degrees of freedom of the
vector field.

The imaginary part of the density of the Lagrangian
can be obtained using the relationship [34]

V T ImL =
1
2

∫ ∑
n,λ

ln | c1nλ |2 dp2dp3
L2

(2π)2
. (47)

From (47), taking into account (37) and (40), we arrive
at

ImL =
e2EH

8π2

∞∑
k=1

(−1)k−1

k
exp

(
−πkm2

eE

)
×coshπk (σ + gH/E) + 1

sinh (πkH/E)
. (48)

According to the approach of [13] the first term in (48)
(at k = 1) coincides with the intensity of pair production

(43) (probability of the pair production per unit volume
per unit time) divided by 2. The expression ImL (48) and
the pair production probability (46) do not depend on the
renormalization scheme, because all divergences and the
renormalizability are contained in ReL [13].

6 Polarization of vector particle vacuum

In this section we evaluate one-loop corrections to the La-
grange function of a constant and uniform electromag-
netic field due to the field interaction with a vacuum of
vector particles with the EDM and AMM. This problem
has been solved for a number of theories [13,15–18]. The
effect of scattering of light by light is described by the non-
linear corrections to the Lagrangian of the electromagnetic
field. Adapting the Schwinger method [13] to the fields
described by (22), we obtain the non-linear corrections to
the Lagrangian of a constant and uniform electromagnetic
field:

L(1) =
1

16π2

∫ ∞

0
dττ−3 exp

(−m2τ − l(τ)
)

×tr exp
[
ie0

(
σF̃µν − gFµν

)
τ
]
, (49)

with

l(τ) =
1
2
tr ln

[
(e0Fτ)−1 sin(e0Fτ)

]
,

exp [−l(τ)] =
(e0τ)2G0

Im cosh(e0τX0)
, (50)

where X0 = H0 + iE0, X = (X2)1/2, G0 = E0H0;
E0, H0 are bare (non-renormalized) electric and mag-
netic fields, respectively, e0 is the bare electric charge (the
index 0 refers to the unrenormalized variables). The ex-
pression (49) is the effective non-linear Lagrangian which
is represented as an integral over the proper time τ . Here
we consider the general case of arbitrary constant vectors
E0 and H0. With the help of (24) we calculate the trace
(tr) of the matrices, finding

tr exp
[
ie0

(
σF̃µν − gFµν

)
τ
]

= 2
[
cosh e0τ

(
σG0

ReX0
+ gReX0

)
+ cos e0τ

(
σG0

ImX0
− gImX0

)]
. (51)

Substituting (51) into (49) and subtracting the additive
constant to ensure that the expression L(1) vanishes for
zero fields, we get

L(1) =
1
8π2

∫ ∞

0
dτ−3 exp

(−m2τ
)

×
[
(e0τ)2G0(cosh e0τ (σG0/ReX0 + gReX0)

+ cos e0τ (σG0/ImX0 − gI mX0))/
(Im cosh(e0τX0)) − 2

]
, (52)
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L = L(0) + L(1)

= −F +
1
8π2

∫ ∞

0
dττ−3 exp

(−m2τ
)

×
[
(eτ)2G cosh eτ (σG/ReX + gReX) + cos eτ (σG/ImX − gImX)

Im cosh(eτX)
− 2 + (eτ)2

(
2
3
+ σ2 − g2

)
F
]
, (54)

The integral (52) is the non-linear correction to Maxwell’s
Lagrangian due to the vacuum polarization of vector (with
the additional scalar field) fields which possess the EDM
and AMM. The Lagrangian (52) contains the term that
renormalizes the Lagrangian of the free electromagnetic
fields

L(0) = −F0 =
1
2
(
E2

0 − H2
0
)
. (53)

Extracting the divergent constant in (52) for weak
fields, and adding (52) to the Maxwell Lagrangian (53),
we obtain the renormalized Lagrangian of electromagnetic
fields (see (54) on top of the page) where the renormalized
fields and charges are used:

F = Z−1
3 F0, e = Z

1/2
3 e0,

and the renormalization constant is given by

Z−1
3 = 1 +

e2
0

12π2

[
1 +

3
2
(
σ2 − g2)]

×
∫ ∞

0
dττ−1 exp

(−m2τ
)
. (55)

The integral (54) vanishes already if the electromag-
netic fields E, H are absent. We can use the cutoff factor
τ0 at the lower limit in the integral (55), and the constant
Z−1

3 diverges logarithmically as τ0 → 0. When the EDM is
absent (σ = 0), and the gyromagnetic ratio g = 2, that is,
in the linear approximation to the renormalizable gauge
theory, we arrive by (55) at the renormalization constant
obtained in [15]. It follows from (55) that when the in-
equality

g2 − σ2 >
2
3

(56)

is valid, the renormalization constant of the charge Z
1/2
3

becomes larger than one. This case, unlike ordinary elec-
trodynamics, corresponds to the absence of the zero charge
situation in the asymptotic region and indicates asymp-
totic freedom in the field [37,38]. According to (56) the
asymptotically free behavior in the vector field is due to
the AMM, but the role of the EDM is opposite. In the case
σ2 − g2 > 2/3 the situation of the zero charge situation
in the asymptotic region, like electrodynamics, is realized.
From (55) we obtain the Callan–Zymanzik β-function that
corresponds to the renormalizable theory

β =
e2
0

12π2

[
1 +

3
2
(
σ2 − g2)] . (57)

Under the condition (56) the β-function is negative
(β < 0) and we arrive at the region of asymptotic freedom.
The AMM ensures asymptotic freedom and instability of
the vacuum in a magnetic field.

Expanding (54) in small electromagnetic fields we ob-
tain the Maxwell Lagrangian including the non-linear cor-
rections (in rational units)

L =
1
2
(
E2 − H2)+ 6σg

2 + 3(σ2 − g2)
(G − G0)

+
α2

m4

[
14 − 30(g2 − σ2) + 15(g4 + σ4)

45
F2

+
2
45

(
1 +

15(σ4 + 6σ2g2 + g4)
4

)
G2

+
2
3
σg
(
g2 − σ2 − 2

)GF
]
, (58)

where α = e2/(4π). The second term in (58) is the induced
parity violation anomaly for a vector field with the EDM.
This and the last terms in (58) violate parity symmetry
due to the EDM of a particle. The effective Lagrangian
(58) is like the Heisenberg–Euler Lagrangian of QED [39,
40], but in the case of the polarized vacuum of vector fields
with arbitrary EDM and AMM and an additional scalar
field (with the same mass). The presence of a scalar field
is due to the special gauge ξ = 1 which was chosen to sim-
plify the calculations. Now we will take into consideration
the contribution of a scalar (non-physical) field. It is easy
to verify that for the particular case of σ = 0, g = 0, (58)
becomes

L(σ = g = 0) =
1
2
(
E2 − H2)

+
α2

90m4

[
7
(
E2 − H2)2 + 4(EH)2

]
=

1
2
(
E2 − H2)+ 4Lspin 0, (59)

where

Lspin 0 =
α2

360m4

[
7
(
E2 − H2)2 + 4(EH)2

]
(60)

is the correction to the Maxwell Lagrangian due to the
vacuum polarization of scalar point-like particles [13]. As
(22) becomes a Klein–Gordon equation for the field ψµ at
σ = g = 0, there is an equal contribution of four degrees
of freedom of fields with spins 1 (three projections ±1, 0)
and 0. To have the contribution from a field of pure spin
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1 we should subtract from (58) the expression (60) corre-
sponding to spin 0 of a field. As a result the Lagrangian
of a constant, uniform, electromagnetic field taking into
account the vacuum polarization of a charged vector par-
ticles with the EDM and AMM is given by

Lspin 1 = L − Lspin 0 =
1
2
(
E2 − H2)

+
6σg

2 + 3(σ2 − g2)
(EH − E0H0)

+
α2

m4

[
7 − 20(g2 − σ2) + 10(g4 + σ4)

120
(
E2 − H2)2

+
1 + 5(σ4 + 6σ2g2 + g4)

30
(EH)2

+
1
3
σg
(
g2 − σ2 − 2

)
(EH)

(
E2 − H2)] . (61)

For the particular case σ = 0, g = 2, which corresponds to
the linear approximation to the renormalizable SM, (61)
leads to the expression

Lspin 1 =
1
2
(
E2 − H2)+ α2

10m4

×
[
29
4
(
E2 − H2)2 + 27(EH)2

]
, (62)

which coincides with those obtained in [15].
It is possible to obtain the asymptotic form of (54) for

super-critical fields at eE/m2 → ∞ and eH/m2 → ∞.
However, for strong electromagnetic fields the AMM and
EDM can depend on the external field like the dependence
of the electron AMM in QED [41,42].

7 Conclusion

Starting with the Dirac–Kähler equation for tensor fields
we arrived at the two P -odd subsystem for self-dual and
antiself-dual antisymmetric tensors of second rank. These
equations are based on the (0, 0) ⊕ (1/2, 1/2)⊕ (1, 0) and
(0, 1) ⊕ (1/2, 1/2) ⊕ (0, 0)-representations of the Lorentz
group and describe fields with spins of 1 and 0. The 8-
component Dirac-like P -odd matrix wave equation is con-
structed; it possesses the GL(2, c) group of symmetry.
This symmetry is due to the presence of two spins, 1 and 0.
The system of tensor equations considered allows us to in-
troduce the EDM and AMM of a particle in the first order
equations. The second order equation for a particle with
the EDM and AMM is simpler (for solving) compared to
the Proca equation. This equation can be treated as an
equation for a vector particle with the gauge ξ = 1 in the
framework of the Lee and Yang formalism. The contri-
bution of the non-physical scalar field to physical observ-
ables is eliminated at the end of the calculations. Such an
approach allowed us to obtain the pair production prob-
ability, and the effective Lagrangian for electromagnetic
fields taking into account the polarization of the vacuum
of vector particles with the EDM and AMM. This is the

generalization of the Schwinger result for the case of vec-
tor particles in external electric and magnetic fields. The
exact formula for the intensity of pair production of fields
with spin 1 and 0 is the sum of the intensity of pair pro-
duction of vector and scalar particles. It is shown that
there is pair production of vector particles by a purely
magnetic field in the case of g > 1 ensuring asymptotic
freedom and instability of the vacuum in a magnetic field.
The role of the EDM of a vector particle is opposite: the
EDM of a particle does not lead to instability of the vac-
uum in a magnetic field and suppresses the phenomenon
of asymptotic freedom. The pair production probability
does not depend on the renormalization scheme because
all divergences and the renormalizability are contained in
ReL. Discussing the procedure of the renormalization we
imply that the scheme considered is the linearized version
of renormalized gauge theory. This point of view is due to
the smallness of the vector field self-interaction constant
(see [14]), and it is possible to ignore processes that allow
for the self-interaction of the vector field in vacuum.

The presence of the EDM and the value of the AMM
κ �= 1 (g �= 2) of a vector particle leads to physics beyond
the SM. Recent experimental muon AMM data [43] have
challenged the SM as there is a discrepancy of 2.6σ devi-
ation between the theory and the averaged experimental
value. This can open a window to new physics.
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